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ABSTRACT 

The Predictive Congestion Control framework, as proposed by Ko, Mishra, and Tri- 

pathi [1], applies to high-speed, wide-area communication networks. The central as- 

sumption of the framework is that the link propagation delay, a deterministic quantity 

depending on fiber length, dominates all other types of delay in the networks. Within 

the framework, the authors developed four schemes, the static, optimistic, pessimistic, 

and heuristic, which are summarized here. This thesis presents two new schemes and 

compares their performances to those of the original four schemes. One new scheme, the 

square-root queue scheme, adapted from a dynamic window scheme of Mitra and Seery 

[3], attempts to equate the square of the average buffer occupancy and the product of the 

output rate and the link propagation delay. The second new scheme, the equal-risk princi- 

ple scheme, motivated by keeping the probability of packet loss small, compares available 

space to the requested output rate. The schemes were tested on two cases in simulations: 

one virtual circuit with cross-traffic sharing one link, and two virtual circuits having one 

link in common. The measures used to judge performance are packet-loss ratios for the 

congested link, for the internal network, and for the end-to-end virtual circuit. Based on 

these measures, the square-root queue scheme and the equal-risk scheme perform as well 

as but not significantly better than the static scheme. 
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CHAPTER 1 

INTRODUCTION 

In this thesis, the Predictive Congestion Control framework described by Ko, Mishra, 

and Tripathi for high-speed, wide-area networks is explored. In [1], they assume that with 

fiber optic links and with advances in switching technology, transmission errors-due to 

noisy carriers-and switching delays will be greatly reduced. Furthermore, as integrated 

circuit speeds increase, the corresponding processing delay for packets will decrease. 

Thus, in the Predictive Congestion Control framework, instead of four causes of delay- 

processing, switching, propagation, and queueing-there are only two-propagation and 

queueing. Since the speed of light is a limit, and since distances between communicating 

nodes are known, the propagation delay is assumed to be deterministic. The other source 

of delay, queueing, is determined by the specific control scheme used in the network. 

In [1, 2], Ko et al. examine four schemes-static, optimistic, pessimistic, and heuristic- 

in a variety of network configurations and conditions. In this thesis, two more schemes are 

devised and examined-the square-root queue and the equal-risk principle schemes-and 

their performances are compared to those of the original schemes. 

The main motivation for predictive congestion control1 is to use the fact that (1) 

propagation and processing delays in high-speed networks are nearly deterministic, and 

(2) accurate knowledge of propagation delays enables nodes to accurately estimate each 

other's states. By assuming that the delay is dominated by the propagation delay, the 

time "distance" between nodes can be assumed to be known. Node i, upon receiving 

information from a neighbor, e.g., node j, can mark that information with a specific age, 

xWhen referring to the specific framework of Ko, Mishra, and Tripathi, "Predictive Congestion Con- 
trol" is written with capitalized letters; while referring to the general concept of congestion control that 
estimates future behavior of the network, the term "predictive congestion control" is not capitalized. 



as in "This information is Dij time units old," where Dij is the known delay between 

nodes i and j. 

Furthermore, the control scheme at node i can estimate the effect of a control decision 

at i upon a future state of the neighbor j. The state of a node could be the buffer 

occupancy at the node and the input and output rates of virtual circuits passing through 

the node.2 With the link delays known and deterministic, Ko, Mishra, and Tripathi argue 

that the estimates of the neighboring states based on the deterministic propagation delays 

are better than estimates based on random link delays. 

To take advantage of the known link delays, Ko et al. proposed the Predictive Con- 

gestion Control framework. In this framework, node i, at various control decision times, 

adjusts the output rates of virtual circuits passing through node i. The decisions depend 

on the current state of node i and the estimated future states of node t's neighbors. Node 

i can use estimates of other nodes to influence its decisions, but utilizes only information 

passed to it from its neighbors, so that it knows the age of the information. For example, 

at time t, node k sends information to its neighbor node ,;'; node j receives the informa- 

tion at t + Djk. Node j can then send node fc's information to node z; node i receives the 

information at t -f- Dy + Djk (or at t + Dij + Aj + Djk, where Aj is the length of time 

that node j holds on to node fc's information before sending on to node t). The quantity 

D^ + Djk (or Dij + Aj + Djk) is the age of the information. 

This framework requires the use of decentralized control. Output rates are adjusted 

hop-by-hop. Information at each node concerns only that node and its neighbors, or it 

is global information filtered by the neighbors. For example, if i —* j —*• k is the path 

from node i to node k, for example, then node i can eventually know Dij and Djk , but 

the delay from node i to node k is not merely the sum of the two. The queueing delay 

at node j, a time-varying quantity, has to be added in. One advantage of this method is 

that changes in the network structure are localized; information must only be updated 

near the site of the structure change. However, to maintain this flexibility, the packets 

2The Predictive Congestion Control framework assumes a virtual circuit-switched network. 



(maybe only state information packets) require an "age" field, which would accumulate 

the various A'/s and A/s as the packets travel through the network. 

Ko, Mishra, and Tripathi leave the field open for specific control schemes to be used 

in the Predictive Congestion Control framework. They discuss four schemes in [1, 2]: 

static, pessimistic, optimistic, and heuristic. 



CHAPTER 2 

KO, MISHRA, AND TRIPATHI SCHEMES 

For the schemes discussed below, Ko et al. assume that the links have uniform delays, 

that is, Dij is identically equal to D, for all pairs of neighboring nodes i,j in the network. 

In addition, Ko et al. assume that the output rate of a particular virtual circuit at 

a given node is constant between decision times. For this to happen, the system has to 

have "announced arrivals.'' For example, node i receives an announcement at decision 

time t that it will receive x packets during [t,t + D) on virtual circuit V, where t + D 

is the next decision time. Node t can use the announced value x in determining its own 

output rates over the same interval. 

Ko et al. use two performance measures to judge the performance of each control 

scheme: average throughput and average delay (including only successfully transmitted 

packets). Though these two measures concern end-to-end performance, Ko et al. argue 

that in a hop-by-hop context, matching the input rates to the output rates at each 

node along the virtual circuits guarantees good performance as judged by the end-to-end 

throughput and delay. 

2.1    Static Scheme 

In this scheme, the output rates are selected at the start of operations and then held 

constant. If necessary, that is, if a virtual circuit is rerouted or a new virtual circuit is 

added, then the output rates may be adjusted. 

To match rates, the output rate of each node for a specific virtual circuit is set to 

the mean rate of that virtual circuit's source. For example, in Figure 2.1, source £,• has 

mean ^,-. Hence, the static scheme assigns the following output rates Rnode,output,vc#' 



Network 

Figure 2.1   Network model with two virtual circuits 

node i:   Ri,<mt,i = Mi   Rit<mt,2 = A*2   totalÄj)(mt = y.\ + fi2 

nodej : Rj,out,2 = /*2       totalRjt0ut = /*2 
Note that the static scheme is not specifically a predictive congestion control scheme. 

It is included to provide a benchmark for comparison. If dynamic control schemes (such 

as those below) cannot perform better than the static scheme (with fixed parameters) 

over a broad range of traffic patterns, then there is no need to bother with estimating 

the future states of the neighboring nodes. 

2.2    Optimistic Scheme 

In this scheme, the nodes in the network assume that the downstream nodes can 

handle any traffic passed down to them. Roughly speaking, each node matches input 

and output rates by explicitly setting its output rate for a given virtual circuit equal to 

the input rate for that same circuit. Specifically, the output rate for a given node and 

virtual circuit at a given decision time is set to the flushing rate, which is the sum of 

the input rate plus any additional rate needed to empty the buffer by the next decision 

time. But, if the initial buffer is empty, the buffer never fills up; hence, the flushing rate 

identically equals the input rate. There is a difference between the flushing rate and the 

input rate only if there is a failure somewhere. In that case, some node has a zero output 

rate, causing its buffers to fill up. 



2.3    Pessimistic Scheme 

2.3.1    Description of the scheme 

The main goal of the pessimistic scheme is to never allow the downstream neighbor's 

buffers to overflow. That is, the node does not send a packet unless it knows that there 

will be space for the packet in the next node's buffers. 

To describe this scheme in detail, the following notation is introduced: 

Bi(t) = buffer occupancy of node i at time t 

Ritin(t) = input rate of node i at time t 

Ri,out(t) = output rate of node i at time t 

This notation deals with only one virtual circuit at a time; when there is more than one 

virtual circuit, the subscript includes an additional V term, where V is the identifier of 

the specific virtual circuit. For example, B\${t) is the buffer occupancy of virtual circuit 

2's packets at node 1 at time t. 

A difference between this notation and the notation of Ko, Mishra, and Tripathi is 

the use of J9,(t). Ko et al. use Bi(t) to denote the amount of free buffer space at node i 

at time t.1 For this analysis of their schemes, Bi(t) denotes the amount of buffer space 

occupied at node i at time t, because it is easier to think in terms of how many packets 

are in the buffer, not in terms of how many packets are not there. To convert from one 

to the other, Bi(t)Ko = Bmax — Bi(t)Das . One advantage of the approach in this thesis 

is in the case of different Umax's. 

If decision times are every D time units, then node i attempts to set Ri,out{t) so that 

Bj(s) < £max,< + D < s < t + 2D 

1See, for example, p. 12 of [1]. 



 {7) I^J^Q . 
Figure 2.2   Nodes i and j with corresponding delay 

where j is i's downstream neighbor2 and J5max= maximum buffer occupancy per VC 

per node (same at all nodes) (see Figure 2.2). 

Since Ri,out(-) and Rjt0ut(-) are constant between decision times, 

Bj(t + D) = Bj{t) + [Rj,in(t) - Rjtout(t)} * D. 

By rescaling time, it can be assumed that D = 1; thus, 

Bi(t +1) = Bj{t) + [RjM(t) - Rj>0ut(t)}- 

Next, from the relationship Rj,in(t) = Ri,<mt(t — 1), the equation becomes 

Bi{t + 1) = Bj{t) + [RiM* - 1) - Rj,out(t)] 

and similarly for the Bj(t + 2) 

Bj(t + 2) = Bj(t + 1) + [RiMt) ~ RjMi + !)]• 

Substituting in for Bj(t + 1) yields 

Bj(t + 2) = Bj(t) + Ri,out(t ~ 1) " Rj,o»t(t) + [Ri,out(t) ~ Rj,out{t + 1)]. 

The goal is to have Bj(t + 2) < i?max, which requires 

Ri,out(t) < #max - Bj(t) - Ri^a(t - 1) + £;,„*(*) + Rj,out(t + !)• 

At time t, node i knows Ri,0ut(t — 1) and can calculate Bj(t) from the known quan- 

tities Bj(t — 1), Rj,in(t — 1), and Rj,out(t - 1).   The node does not know i?j,out(^) nor 

2The notation in this thesis for node i's downstream neighbor depends on the context. When the 
nodes are numbered sequentially, the downstream node is marked i + 1, while for general networks, the 
downstream neighbor has the generic label j. 



Rj,<mt(i + 1); hence, the pessimistic scheme makes a worst-case assumption that Rj)OUt(t) = 

Rj,<wt{t + 1) = 0. Hence the constraint takes the form 

Ri,out(t) < Bmax — Bj(t) — Ri,out(t — 1)- 

Finally, taking into account the input rate, the control law is 

Ri,<mt(t) = min(opt,pess) (2.1) 

where opt = Ä,-,,n(<) + Bi(t) and pess = Bmax - Bj(t) - Rittmi(t - 1). 

(With the same notation, the optimistic scheme can be represented as Ri,0ut(t) = opt 

•) 

The memory at each node has separate buffers for each virtual circuit passing through 

it. The maximum buffer space Bmax is per virtual circuit. For example, if three virtual 

circuits pass through node i, then node t will have 3-Bmax buffer spaces reserved. 

2.3.2    Oscillation in pessimistic scheme 

Ko, Mishra, and Tripathi remark in [1] that the size of Bmax affects the performance 

of the pessimistic scheme. Setting the maximum buffer occupancy too small may lead to 

excessive oscillations. They also note in [1] that, under the pessimistic scheme, the only 

packets lost are dropped at the first node; no packets are dropped after the first node. 

To illustrate these points more clearly, the discussion below is included. 

In Figure 2.3, there is a virtual circuit V passing through nodes 1,2,3,... successively. 

(There may be more nodes in V, but only nodes 1, 2, and 3 are of concern here.) Each 

link has the capacity of 1 gigabit per second (Gb/s), and each node has up to 2?max 

buffer slots available for V's packets. Each packet is 4 K, or 32768 bits, long, and the 

one-way propagation delay between each neighboring pair of nodes is 10 ms. Hence, each 

link can pass up to 304 packets per delay time period. The source 5" offers Poisson traffic 

with mean 500 megabits per second (Mb/s), or, equivalently, 152 packets per delay time 

period. 

Tables 2.1 and 2.2 present the numbers of packets in each buffer or each link at the 

decision times t = 0,1,2,..., (where the time unit is one delay period D = 10 ms) for the 

8 



Source 

Rl,ovt(t — 1) R2,out(t — 1) 
Rl,in(t) f^ ^\   = -R2,,n(<) fT\     = R3,in(t) f ^nWQ. 

(D = 10ms) 

•'    *i(t) Sa(<) #*(*) 

(Lossi(t)) 

Figure 2.3   Virtual circuit for illustration of oscillation with pessimistic scheme 

Table 2.1   Pessimistic scheme with Bmax = 100 = | capacity, mean = 152 = | capacity 

*    i*i,m(*)    (Lossx(t))    Btjt)    R2,in(t)    B2(t)    R3,in(t)    B3(t) 
0 148 
1 153 (0) 48 100 0 
2 156 (101) 100 0 0 100 0 
3 151 (56) 100 100 0 0 0 
4 149 (151) 100 0 0 100 0 
5 157 (49) 100 100 0 0 0 
6 152 (157) 100 0 0 100 0 
7 147 (52) 100 100 0 0 0 

pessimistic control scheme in two cases. The first case has i?max= 100 packet slots, the 

second case has Bmax = 2AD, where A is the mean rate for the VC source. The formulas 

for deriving the numbers in the table are summarized below. The following equations 

hold for all * = 1,2,3,... ,i = 1,2,3,... : 

Bi(t) = mm(Bi{t - 1) + Ä,v„(* - 1) - ß,- out(t - 1), Bmax) (2.2) 

-Rt>ut(<) = min(opt,pess) (2.3) 

LosSl(<) = [Bi(t - 1) + Rhin(t - 1) - Ält0Ut(t - 1) - £max]+ (2.4) 

Ri,out(t) = Ri+l,in(t + 1) (2.5) 

where opt = Ri,in(t) + Bi(t) and pess = ßmax - Bi+1 (t) - Rii0ut(t - 1). 

Note that (2.5) implies that Rii0Ut(t) is actually on the row for time t + 1 in the tables 

(under the heading Ri+1<in(t + 1) ). Since Ri,out(t) is the output rate for [t,t+ 1), the 

packets sent out from node i at this rate are spread evenly along link (i,i + 1) at time 

t + 1.   (Because a time unit equal to one propagation delay D is used, the number of 



Table 2.2   Pessimistic scheme with Bmas = 304 = capacity, mean = 152 = \ capacity 

t   Run(t)   (LosSl(Q)   Bjjt)   RUn(t)   B2(t)   R3,in(t)   B3(t) 
0 148 
1 153 (0) 0 148 0 
2 156 (0) 0 153 0 148 0 
3 151 (0) 5 151 0 153 0 
4 149 (0) 3 153 0 151 0 
5 157 (0) 1 151 0 153 0 
6 152 (0) 5 153 0 151 0 
7 147 (0) 6 151 0 153 0 

packets transmitted by node t during [t, t +1) is the output rate multiplied by 1; instead 

of writing Ri^a(t) * 1, Ri,out(t) is used for both the output rate and the number of packets 

transmitted.) 

For an example of the calculations, with i?max = 100 in Table 2.1, consider the line 

for t = 2. The quantity i?i,m(2) is the number of packets output from the source during 

the time period [2,3); this number is Poisson(152). The number 156 is only one of several 

possible values. Since #i(l) = 48, Äi,i«(l) = 153, and Äi)OU«(l) = 0, by (2.2) and (2.4) 

Si (2) = min(48 + 153 - 0,100) = 100 

Lossi(2) = [(48 + 153 - 0) - 100]+ = 101 

Bi{2) = 0,j = 2,3,... (2.6) 

LossJ(2) = 0,j =2,3,..., 

where Bj(2) = LOSSJ(2) = 0 because of the pessimistic scheme. Next, from (2.3) and 

(2.6), (for the next line t = 3) 

RiM*) = Ä2,in(3) = min(201,100) = 100 

iW(2) = Ä3,i«(3) = min(0,0) = 0. 

The tables illustrate how the output rates oscillate in relation to the size of 5max- 

Furthermore, the lack of oscillations in Table 2.2 suggests that the threshold for cutting 

off oscillations may be Bmax= twice the mean rate of the source multiplied by the link 

propagation delay (equivalent to a "round-trip window size"). 

10 



VCI 

VC2    . • • " L- same link 

Figure 2.4   Two virtual circuits sharing a link 

2.4    Heuristic Scheme 

2.4.1    Motivation for heuristic scheme 

Before discussing the fourth control scheme of Ko, Mishra, and Tripathi, the heuristic 

scheme, the effects of cross-traffic are considered. In the above three schemes, the cross- 

traffic does not affect the decision of the node concerning a specific virtual circuit. For 

example, consider Figure 2.4. 

At node i, VC2 is cross-traffic for VCI (and vice versa), but node i does not take 

VC2's traffic into account when deciding Rittmt,i(t) if the static, optimistic, or pessimistic 

schemes are employed. 

The effects of cross-traffic are felt only after the decision is made. For example, if 

the sought-after values of VCl's output rate and VC2's output rate at node i at time t 

add up to more than the capacity of the shared outgoing link, either one or both of the 

virtual circuits do not receive the full bandwidth that they request. If, for example, VCI 

has priority over VC2, then VCI most likely receives all of its requested output rate, and 

VC2 receives whatever capacity is left over. If, however, the two virtual circuits share 

the same priority, some other, fairer allocation is needed. 

To differentiate between the rate requested and what is actually allocated, the nota- 

tions "requested output rate" and "actual output rate" are used. The value RilOUt,vc{t) 

determined by the static, optimistic, and pessimistic schemes should be viewed as the 

output rate that the virtual circuit requests to receive, not as the output rate that the 

virtual circuit actually receives. What portion of the link capacity it actually receives 

11 



G^<m v1,...,vN 

all on same link / 

Figure 2.5   Virtual circuit example for heuristic scheme 

depends on the total requested rate for that link and the allocation procedure used by 

the node. 

2.4.2    Description of the heuristic scheme 

The heuristic scheme explicitly takes into account the amount of cross-traffic when 

deciding the output rate at a given node for a given virtual circuit. The other three 

schemes (static, optimistic, and pessimistic) do not, as noted above. The heuristic scheme 

attempts to match the output rate of a given node to both the output rate of its upstream 

neighbor (at the previous decision time) and of its downstream neighbor (at the next 

decision time). If the (estimated) upstream and downstream rates do not match each 

other, an intermediate value is chosen as the requested output rate at the given node, 

and the choice takes into account cross-traffic rate values. In practice, the estimated 

downstream rate is first taken into account, then the upstream rate is taken into account. 

To illustrate the detailed operation of the heuristic scheme, Figure 2.5 is presented.3 

To decide Atl(mt,Vo(0> the heuristic scheme first estimates Äj,out,v0(* + D) (Ko, Mishra, 

and Tripathi use a weighted moving-average estimator R(t) = £n=i anR{t — nD),a.x > 

0-2 > fl3 > Oj H On = 1)- The scheme then checks the utilization of the outgoing link (e.g., 

link /) from j that VQ shares with Vi, V2,..., V/v- If this value, J2n=\ Rj,out,vn(t + D), is 

greater than some specified fraction of link /'s capacity, then the heuristic scheme adds 

to Rjtout,v0(t + D) a. fair share of the remaining, unused capacity of link /. On the other 

hand, if the utilization of link / is below the specified fraction of /'s capacity, then the 

3The description does not include all of the heuristic scheme's equations in full detail. See [2] for the 
full description. 

12 



heuristic scheme adjusts RjtOUt,v0(t + D) depending on the fraction of buffer space at 

node j allotted to Vo that is estimated to be occupied by Vo's packets at time t + D. If 

^i.v0(< + D)/Bmax is near 1, then Rj,outy0{t + D) is decreased; if the fraction is near 

0, then a large portion of Vs unused capacity is added to Rj,0ut,vQ(t + D); and if the 

fraction is neither near 0 nor 1, then a small portion of /'s unused capacity is added to 

-Rj,otrt,v0(< + D). Finally, the adjusted value of Rj,outy0(t + &) *s compared to the flushing 

rate (which depends on the upstream output rate). The actual output rate, Ri,out,v0(t), is 

the minimum of the two values. That is, similar to the pessimistic scheme, the heuristic 

control law has the form Ri,outy0{t) = min(opt, Rj,out,v0(t + £))> where opt is the flushing 

rate, defined as above for the optimistic and pessimistic schemes. 

The*notation means that the marked quantity is an estimate, not an observed value. 

Note though that, in this case of node j being node i's downstream neighbor, Bj(t) is 

not written for the buffer occupancy of node j at time t (as estimated by node i), t a 

decision time. The calculated value of 

Bj{t) = Bi(t -D) + [Rjtin{t -D)- Rj<out(t -D)]*D 

follows completely from information known at node i at time t. Hence, while not a 

directly observed value, Bj(t) is known to i at time t. 

13 



CHAPTER 3 

NEW SCHEMES 

3.1    Square-root Queue Scheme 

In this section the first of two new Predictive Congestion Control schemes-the square- 

root queue scheme-is presented and described. First, a congestion control scheme de- 

scribed by Mitra and Seery is summarized and why this scheme appears suitable for the 

Predictive Congestion Control framework is pointed out. However, the framework on 

which Mitra and Seery design their scheme is different than the Predictive Congestion 

Control framework, and several adjustments have to be made before the scheme can be 

used in the Predictive Congestion Control framework. Out of these adjustments comes 

the development of a scheme similar to the original Mitra and Seery scheme; this scheme 

is the square-root queue scheme. 

3.1.1    Motivation for a new scheme 

In [1, 2],.Ko, Mishra, and Tripathi argue that packet loss because of buffer overflow 

will be the main cause of unsuccessful transmissions (as opposed to transmission errors 

caused by a lossy transmission medium). Yet, the only scheme they propose which has no 

packet loss inside the network is the pessimistic scheme. The pessimistic scheme, however, 

requires excessively large buffers to avoid large oscillations in the network traffic. In the 

search for a control scheme that minimizes packet loss while needing minimal buffers, the 

dynamic window flow control proposed by Mitra and Seery in [3] appears to be a good 

candidate. 

Mitra and Seery describe a scheme that works for high-speed, wide-area networks 

with propagation delays much larger than the other sources of delay. In their analysis 
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of such a network, they find an operating point for the control scheme that maximizes 

the power ( = throughput/delay) of each virtual circuit. Since this operating point is 

in the region where the window size is approximately equal to the number of packets 

offered during one round-trip propagation delay, the operating point gives an optimal 

relationship between the window size and mean round-trip response time. The response 

time, which can be observed, can then be used to adjust the window size towards the 

optimal size. The window size-response time relationship is not linear, and it happens 

to offer an advantage similar to additive increase-multiplicative decrease window size 

control. 

3.1.2    Summary of Mitra-Seery scheme 

For a virtual circuit with M bottleneck nodes, Mitra and Seery present the following 

control scheme:1 for packet n, n = 1,2,..., measure the round-trip response Rn, calculate 

the bias Bn = (Rn — \)y/K^— y/M, and adjust the window size Kn+i = Kn — aBn. Mitra 

and Seery scale time so that one time unit equals the round-trip propagation delay, the 

quantity Rn — 1 denotes the (scaled) time that packet n spends waiting in queues between 

the source and the destination. Then, with R* and K* as optimal values for the response 

time and window size, respectively, Mitra and Seery note that (R* — l)y/K* = b. After 

both sides are multiplied by y/K*, this relationship can be interpreted as follows. The 

mean total number of packets waiting in queues at any given moment ((R* — \)K*) is 

proportional to the square-root of the window size (by/K*). Finally, the bias function 

follows from finding the constant of proportionality, 6 = y/M. 

Since the authors restrict the change in window size to the set {—1,0,1}, the process 

(Ä"n)n>o represents a virtual window size; the actual window size Kn+i changes according 

xThe scheme is only summarized here. To understand in more detail the choice of bias function and 
window control law, see [3]. 
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to the rule 
Kn-1    itKn+1<Kn-l 

Kn+1 = < Kn Kn-l<Kn+i<Kn + l 

[Kn + 1 Kn + 1< Kn+i 

This scheme has some advantages. For one, the virtual circuits that share links can 

have decoupled control. The queue lengths are only approximately the square-root of 

the number of packets offered in one round-trip propagation delay period, much smaller 

than the buffer sizes needed in the pessimistic scheme. And, most importantly, with high 

probability, there is no packet loss. Hence the scheme appears to be a good candidate 

for a Predictive Congestion Control scheme. 

3.1.3    Adjustments necessary for Predictive Congestion Control framework 

The differences between the framework that supports the Mitra and Seery scheme 

and the Predictive Congestion Control framework need to be resolved before the new 

scheme can be used as a Predictive Congestion Control scheme. On the one hand, the 

Mitra and Seery scheme is window-based, end-to-end control designed to handle data 

traffic. On the other hand, the Predictive Congestion Control framework supports rate- 

based, hop-by-hop control schemes for general traffic. In addition, the Mitra and Seery 

scheme uses acknowledgements in determining the mean round-trip response time, while 

acknowledgements do not exist in the Predictive Congestion Control framework. 

Because of some assumptions by Ko, Mishra, and Tripathi about the four Predictive 

Congestion Control schemes that they develop, the differences mentioned above are not 

difficult to resolve. First, since the output rates are assumed to be piecewise constant, 

the rate-based control becomes equivalent to window-based control; the (constant) out- 

put rate multiplied by a length of time-decision interval or propagation delay-gives an 

equivalent window size. Second, to equate end-to-end control with hop-by-hop control, 

each link is viewed as a complete (virtual) circuit. That is, in Mitra and Seery's notation, 

M is set equal to one. Third, while developing their four specific schemes, Ko, Mishra, 

and Tripathi implicitly assume that the traffic is data-like. They model the sources as 
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Poisson distributed and they emphasize minimizing delay and maximizing throughput as 

performance criteria; these source models and performance criteria apply more to data 

traffic than do other types of traffic (voice and video, for example). 

Finally, Mitra and Seery note that the design equation relating the response time to 

the window size is not the only basis for a control scheme; they state another design 

equation relating the average nodal queue size to the window size. While acknowledge- 

ments are not part of Predictive Congestion Control, the buffer occupancy (queue size) 

is part of local state information. Thus, this second equation can be used to develop a 

new scheme that can be used in the Predictive Congestion Control framework. Mitra 

and Seery leave the details of this new scheme to the reader. Because they do not provide 

any specifics, the following scheme is developed. 

3.1.4    Square-root queue scheme 

In this subsection, the square-root scheme is first developed in the context of the 

framework that Mitra and Seery use and then presented as a Predictive Congestion 

Control scheme. 

The name "square-root queue scheme" comes from the relationship between the mean 

nodal queue size and the window size, as Mitra and Seery derive: 

<N>=ßV\ + 0(l). 

The symbol < N > is the mean nodal queue size, and A is the throughput per round-trip 

propagation delay. In the optimal operating region, where the window size K approxi- 

mately equals the throughput A, Mitra and Seery note that 

<N>=ß*VK;ß* = l/VM. 

Because the case M = 1, hop-by-hop control, applies to the Predictive Congestion Control 

framework, the queue size-window size equation becomes < N >= \JK. The correspond- 

ing window control decision rule is 

Kn+1 = Kn - aBn, (3.1) 
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where Bn = y/K^ — Nn (a is some number 0 < a < 1). To change the actual window 

size, Kn, the same conversion as before is applied: 

f Kn-l   ifKn+1<Kn-l 

Kn+l = | kn      kn-i<Kn+1<kn + i    . 

kn + i kn + i<Kn+1 

In words, after packet n is sent, n = 1,2,..., the node determines the (mean) nodal 

queue size JVn, calculates the bias function Bn — y/K^ — Nn, adjusts the virtual window 

size Kn+i, and finally changes the actual window size Kn+x. If the window size is too 

small, y/K^ < JVn, then Bn < 0 and the scheme increases the window size {Kn+\ > Kn). 

By similar reasoning, if Kn is too large, the window size decreases (Kn+i < Kn). 

To translate from the Mitra and Seery notation to the Predictive Congestion Control 

notation, 2DRi<out(t), Bi(t), and bias;, t = 0,1,2,..., are substituted for, respectively, 

the round-trip window size Kn, the mean nodal queue size Nn, and the bias term Bn,n = 

0,1,2,... . The output rate of node i at time t is Ä,-)0ut(<), the quantity that the control 

scheme sets at time t; Bi(t) is a moving average of the buffer occupancy Bi(s) of node 

i for times s < t. The bias; term is defined below. It is assumed again that D = 1 and 

that node j is the downstream neighbor of node i. With these changes, (3.1) becomes 

2Ä,-,ou«(*) = 2Ri,^t(t - 1) - abias;, (3.2) 

where biasi — (2Ri<out{t — l))l^2—Bi(t—l). When determining B(t) (for any node), a sum 

EjfcLö1 bkB(t — k), for some integer N, is used instead of a harder and slower to calculate 

integral %;ff_TB(s)ds for some time period T. Because Rout(s), s > 0, is piecewise 

constant, B(s) is continuous and piecewise linear, and hence only B(n), n = 0,1,2..., is 

needed for calculating B(t). (The simulations use N = 2 and bo = b\ = %.) 

In the spirit of the Predictive Congestion Control framework, the state at node j at 

time t + 1 is also taken into account. Node i, at time t, uses an equation similar to (3.2) 

to estimate the value of Rjt<mt(t + 1): 

2Rjtout(t + 1) = 2Rjt<mt(t) - abia^-, (3.3) 
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where bias,- = (2RjtOUi(t))
lf2 — Bj(t). Again, the" notation signifies an estimate of the 

marked quantity, based on information known at node i at time t. The estimated output 

rate at time t, Rout(t), can be calculated in the same manner as that for the heuristic 

scheme, Rout(t) = E°*R*a(t -»)>E«n = l,ai > a2 > ... > 0. Since Bj(t) depends 

only on Bj(s),s < t, which is known at node t at time t, Bj(t) is not an estimate and is 

not marked by the * notation. Because, to first order, the way to meet the performance 

criteria for end-to-end throughput and delay is to match input rates to output rates 

at each node, the control scheme strives to have Äy,,-B(s) « RjtOUt(s), for all 5. It is 

noted next that RilOUt(t) = Rj,in(t + 1),* = 0,1,2..., and thus RilOUt(s) is substituted 

for Rj,out(s + 1),3 = t or t - 1, in (3.3) to yield 

2Ri,mt{t) = 2Ri<out(t - 1) - ablaV (3.4) 

Since the constant a is set by the control designer, (3.2) and (3.4) can be divided through 

by 2 on both sides and the factor of one-half absorbed into the value of a. The resulting 

decision rule, which combines the influences of bias,- and biasj, is 

Ri,out(t) = Ri,out(t — 1) — alntermedval(bias,,biasj), 

where Intermedval(bias,-,biasj) = cibias,- + C2biasj, and ci + ci = 1. (For the simulations, 

d = Bi(t - l)/(Bi(t - 1) + Bj(t)) and c2 = Bj{t)l{Bi{t - 1) + Bj{t) are used.) 

As before for the Ko, Mishra, and Tripathi schemes, to ensure that the output rate 

is constant between decision times, the final step in the square-root queue scheme is to 

take the minimum of the above "requested" Ri,out(t) value and the flushing rate. The 

actual output rate is then the minimum of the two rates. 

In summary, the square-root queue scheme in the Predictive Congestion Control 

framework proceeds as follows: 

(1) Calculate B{(t — 1), then bias,-. 

(2) Estimate Rj,out(t), calculate Bj(t), then estimate bias,-. 

(3) Determine Intermedval(biasj,biasj). 
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(4) Update RitOUt(t) = Ri,out(t — 1) — alntermedval(bias,-,biasj). 

(5) Set Ri,out(t) = mm(opt,i2j)OUt(i)), where opt = Ri,in(t) + Bi(t), the same as for the 

Ko, Mishra, and Tripathi schemes. 

3.1.5    Dynamics of square-root queue scheme 

The square-root queue scheme attempts to keep the output rate at each node equal 

to the square of the average buffer occupancy. However, the range of the output rate 

does not cover the range of the squares of the buffer occupancy. For example, in the 

simulations, .Bmax is 50 packets, requiring i20Ut to range up to 2500 packets per delay 

time unit, but the capacity of the links is only 304 packets per delay time unit. 

Beyond this inherent limitation, the scheme functions as follows. At node i, for the 

current node bias term, if the output rate at time t — 1 is less than (greater than) the 

square of the average buffer occupancy at time t — 1, then the bias term for node i 

is negative (positive), causing the next output rate at time t to be greater (smaller). 

Intuitively, if the buffer at node i is filling up, the output rate needs to be increased to 

keep the buffer level stable, and if the buffer is emptying out, then the output rate does 

not have to be so high and can be decreased. 

The influence of the next node's bias term seems counterintuitive at first glance. 

Again denoting the downstream node as j, if node i expects node j's buffer to begin 

filling up at time t +1, then node i increases its own output rate, contributing even more 

packets to node j's buffer. This appears to make node j's situation worse, not better. 

However, in the same situation, under the square-root queue scheme, node j increases its 

own output rate. Hence node i is attempting to anticipate node j's actions through the 

biasj term, with the possible advantage (or disadvantage) of lessening the magnitude of 

node j's changes in output rate. 
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3.2    Equal-risk Principle Scheme 

The second new scheme proposed for the Predictive Congestion Control framework 

is the equal-risk principle scheme. Of the other control schemes described above, the 

pessimistic scheme is most similar to the equal-risk principle in philosophy. Using the 

equal-risk principle scheme, a node sends on a packet if it estimates that the probability 

of packet loss at the next node because of that node's buffer overflowing is small, that 

is, less than some e, 0 < e < 1. Using the pessimistic scheme, however, a node sends on 

a packet only if it is sure that there is space available for the packet in the downstream 

neighbor's buffer, that is, if it estimates the probability of packet loss at the next node 

because of buffer overflow to be exactly zero. Because of the similar philosophy behind 

each scheme, the control law for the equal-risk principle scheme, as developed below, 

ends up strikingly similar to the pessimistic control law. This similarity is discussed in 

detail following the description of the equal-risk scheme. 

Using this equal-risk scheme, though, different nodes may send on different percent- 

ages of packets. For example, consider a virtual circuit along nodes 1 —» 2 —»• 3, with links 

(1,2) and (2,3) of capacity 1. Assume deterministic traffic, with the VC rate at 0.5, the 

cross-traffic rate on (1,2) at 0.51, and the cross-traffic rate on (2,3) at 1.0, with all traffic 

on a link having the same priority. Then, if e = 0.01, the control scheme holds back < 2% 

of the packets coming into node 1, but holds back >30% of the packets coming into node 

2 (assuming that the cross-traffic is similarly reduced). On both links, though, there is 

the same risk of a packet loss because of buffer overflow. Hence, the name "equal-risk 

principle" (or abbreviated form "equal-risk") is given to this scheme. 

3.2.1    Motivation for equal-risk principle scheme 

Why equalize this risk across all the links? Consider the following back-of-the- 

envelope calculation. Let .ff;(/;_i,/,-, 6,-,X,) be a function inversely proportional to the 

probability of packet loss at node i because of Vs buffers overflowing. Assume that the 

function Hi is increasing in /,- and decreasing in /,_i, 6,-,Xt-, where /,•,/;_!,&,•, and X, are, 
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respectively, the number of packets on z's outgoing link, the number of packets on the 

incoming link to i, the number of packets in i's buffer, and the number of cross-traffic 

packets coming into i. This captures the notion that more traffic leaving node i lowers 

the amount of traffic in the buffer, thus lowering the chances of the buffer overflowing, 

while more traffic going into or already in the buffer raises the chances of the buffer over- 

flowing. Suppose further that the nodes keep separate buffers for each virtual circuit. 

Then Xi does not directly affect the buffer contents for the virtual circuit; thus, only 

Hi{U-i, U, k) is of concern. In addition, the probability of buffer overflow at a given node 

i depends on the difference between /,_i and U, not on the magnitude of /,_i or /,. Thus, 

attention is restricted to //,-(/,• — /,_i, &,-). Finally, note that the control scheme sets values 

for /i, l2,..., IN-I, where N = number of nodes in the VC. The source output rate, /0, 

the destination sink rate, IN, and the buffer occupancies, &,-, are not directly regulated 

by the control scheme. Hence, attention is further restricted to //,-(/,- — f,_i) when i or 

i — 1 equals 1,2,..., N — 1. 

Formulating the above discussion into a maximization problem (with TV = 5) gives 

P : maxH^h - k) + H2(l2 - h) + H3(l3 - l2) + H4(l4 - 13) + H5(h - U). 

To maximize with respect to /,-, i = 1,2,3,4, take the derivative with respect to /,- of the 

above sum and set that derivative equal to zero. The following equations result: 

Ä[(Ji-ftO-JHS(Za-/i) = 0 

H'2(l2-h)-H3(l3-l2) = 0 

H'z{h-l2)-H'A{U-h) = 0 

H'4(l4-h)-H'5(h-h) = 0. 

Combining all of the equations into one yields 

H[(h - lo) = H'2(l2 - h) = H3(l3 - l2) = H'A{U - k) = H'5(h - U). 

Next comes a major assumption, i.e., that the behavior of the links is similar enough to 

use Hi(x) = Hj(x),i,j € {1,2,3,4,5}. Thus each link has the same first-derivative value 
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(H[ = H'z = • • • = #5). Assuming even further that H is monotonic and continuous, it 

is seen that equal first-derivative values for each link mean equal values for Hi. Since 

the probability of packet loss from buffer overflow is inversely proportional to H, the 

equal-risk principle follows. 

Note that the equal-risk principle is derived only when Hi = Hj,i,j € {1,2,..., N}. In 

the more general case, with heterogeneous links, the guiding idea becomes the principle 

of equal first-derivatives of the risks. 

In the simulations, the scheme tries to minimize the loss of probability due to buffer 

overflows instead of maximizing some arbitrary H function. 

3.2.2    Derivation of equal-risk principle scheme 

Using the same notation as the Ko, Mishra, and Tripathi schemes, the derivation of 

the equal-risk principle scheme is presented in this section. The specific update equation 

follows from setting the probability of packet loss less than the given e. 

It is noted first that packets sent on by the current node i during [t, t +1) arrive at the 

next node i + 1 during [t + l,t + 2). To prevent the next node's buffers from overflowing 

during [t + l,i + 2), node i has to set Ri,out(t) so that 2?,+i(tf + 2) < i?max- Substitute in 

for Bi+i(t + 2), and then for i?,-+i(< + 1), using the buffer occupancy evolution formula 

Bj{t + 1) = Bj(t) + Rjtin(t) - Rj^ait), 

where j is any node, and the equivalence 

Rj,out\t — 1) = Rj+l,in(t), 

where j + 1 is j's downstream neighbor. After rearranging to leave only Ri<out(t) on the 

left-hand side, the resulting equation is 

RiM*) ^ 5max - Bi+1(t) -Ri,out{t - 1) + Ri+lfOUt(t) + Ri+i,out(t + 1). (3.5) 

Because the last two terms in (3.5) are not known at node i at time t, their values are 

lower bounded in the following manner. First, (with Xi+i(u) denoting the higher priority 
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cross-traffic on link i + 1 at time u) since Ri+i,out(u) < C — Xi+i(u) for all times u, the 

optimistic assumption is made that node i + 1 sends at the highest possible rate during 

[t,t + 2), that is, 

Ri+iM*) = C- *m(«) for s = t, t + 1. (3.6) 

While the cross-traffic distribution is usually unknown, a Gaussian distribution is as- 

sumed to suffice for a first-order approximation, because of the large numbers of packets 

that pass through each node during any given time period in a high-speed, wide-area net- 

work. It is further supposed that Xi(t),i = any node,* = 0,1,2,..., are i.i.d. Gaussian 

with mean fi and variance a2. Let A denote the mean of the virtual circuit source. Then, 

(3.6), applied to all nodes i + 1 and to all times s, implies that A = C — //. Noting that 

P(X > ß) = Q((ß - /x)/cr) = e for ß = fi + ka and that k = Q~x{e), it is thus arrived 

at that Ri+i,out{s) = C - Xi+i(s) > C - (ft + ka) = A - ka with probability 1 - e, for 

s = t,t + l. 

Therefore, if Rit(mt(t) is set to satisfy 

Ri*ut(t) < £max - Bi+1(t) - Ri<out(t - 1) + 2(A - ka), (3.7) 

then, with probability 1 — e, (3.5) holds true, and thus the buffer at node i + 1 does not 

overflow. Thus, the foundations for the equal-risk principle scheme, described below, are 

set. 

3.2.3    Details and dynamics of equal-risk principle scheme 

From (3.7), the control equation for the equal-risk scheme is found. To maximize 

end-to-end throughput, Ri,0ut(t) is set as high as possible in (3.7). To keep the output 

rate constant between decision times, the flushing rate, via the opt term, is also taken 

into account. The equal-risk control law is thus 

RiM*) = min(opt, Bmax - Bi+1(t) - Ri^t(t - 1) + 2(A - ka)), (3.8) 

where opt is defined as before. Thus, Ri,0ut(t) is determined by values either known or 

calculable at node i at time t. Furthermore, i?max, A, k, and a are set at the beginning 
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of the control scheme operation, and Ri,out(t — 1) is set at the previous decision time; 

only Bi+i(t) has to be calculated by node i at time t. 

To begin describing the dynamics of the equal-risk scheme, all of the time-independent 

parameters in (3.8) are combined into one constant Z = .Bmax+2(A—k<r). Equation (3.8) 

becomes 

Ri<0»t{t) = min(opt, Z - Bi+i(t) - £,>*(* - 1)). (3.9) 

If Bi+i(t) is held constant, (3.9) implies that if RitCmt(t — 1) is set to a value that is large 

relative to Z, then Ri,out(t) must be small, and vice versa. This inversely proportional 

relationship could lead to oscillations. If Ri,out(t — 1) is held constant, a similar relation- 

ship between 2?»+i(<) and Ri,<wt(t) is noted. The value of i?,+i(0 is directly proportional 

to Ri^ut(t — 2), which is inversely proportional to Ri,out(t — 1)- Hence, the influence of 

Bi+i(t) on Rit0ut(t) provides a balance to the influence of Ri,out(t — 1) on Rit0ut(t). 

Noting that (3.9) is essentially the same as (2.1) adds further insight to the dynam- 

ics of the equal-risk scheme. Table 3.1 illustrates the traffic flow for a given arrival 

stream. The parameters are the same as for the virtual circuit described by Table 2.1 

in Section 2.3.2. The numbers follow from the same equations that dictated the val- 

ues of Table 2.1, except Z is substituted in for 2?max m *ne analog for (2.3). Given 

-Bmax = 100, A = 152 = |C, k = 2, and a = 61 = \C, Z = 160. Thus, for example, 

Äw(2) = ß2,,n(3) = min(156 + 100,160 - 0 - 12) = 148. 

The discussion in Section 2.3.2 suggests that for Z > 2A, where 2A is the round-trip 

propagation window, there is no oscillation with the equal-risk principle. The solution 

to avoiding oscillations thus seems to be to set Z large enough. However, Z depends 

on <7, a first-order approximation of the standard deviation of the cross-traffic. For the 

pessimistic scheme, setting J5max large enough to avoid oscillations does not take the 

cross-traffic into account. For the equal-risk scheme, though, Z attempts to account for 

the variance of the cross-traffic. Because the cross-traffic may vary significantly over time 
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Table 3.1   Equal-risk principle scheme with Bmax = 100 = |C, A = 152 = \C, k = 2, 
and <r = 61 = \C 

t     RUn(t)     (Lomft)) Bx{t)     R2,in(t)     Bjjt)     R3,in(t)     B3(t) 
0 148 
1 153 (0) 
2 156 (41) 
3 151 (8) 
4 149 (139) 
5 157 (1) 
6 152 (145) 
7 147 (4) 

in practical situations, the value of Z may need to change periodically to account for any 

changes in the cross-traffic variance. 

0 148 0 
100 12 0 148 0 
100 148 0 12 0 
100 12 0 148 0 
100 148 0 12 0 
100 12 0 148 0 
100 148 0 12 0 
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CHAPTER 4 

SIMULATIONS 

4.1    General Overview of Simulations 

In the simulations that Ko, Mishra, and Tripathi perform of the static, optimistic, 

pessimistic, and heuristic schemes, the networks are simple, to capture the essence of the 

workings of the schemes.1 They have two basic networks, pictured in Figures 4.1 and 

4.2. 

Source Qy-^y^Q^Qy^Qy Destination 

▼ cross-traffic 

Figure 4.1   Network for 1 VC case (with cross-traffic) 

Destination 1 

Source 2^""X V_X ^-^   Destination 2 

Figure 4.2   Network for 2 VC case( "cross-traffic'' is other VC) 

Each link has capacity 1 Gb/s. Each node has 2?max buffer slots per virtual circuit 

passing through it. Each link has the same one-way propagation delay D = 10 ms. 

Each packet is 4 K, or 32768 bits, long. The control decision times are one delay period 

1See [1, 2] for full details of the Ko, Mishra, and Tripathi simulations. 
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apart, at t = 0.000 s, 0.010 s, 0.020 s, ... . At each decision time, the output rate of 

each node is set and held constant until the next decision time. To keep the output 

rate constant between decision times, the value requested by each control scheme is 

compared to the flushing rate (announced input rate plus buffer emptying rate), and 

the minimum of the two rates is selected as the actual output rate. Also, the requested 

output rate is compared to zero and to the link capacity. These precautions prevent a 

node from sending, respectively, more packets than actually exist, negative packets, and 

more packets than can actually fit through the link. Finally, each source of packets is 

Poisson with mean 500 Mb/s. 

The homogeneity of the networks suggests a synchronous system, even though pre- 

dictive congestion control is designed to allow for both asynchronous and synchronous 

systems. For these simulations, the synchronicity of the network operation is exploited. 

Instead of having an event-driven simulation such as Ko, Mishra, and Tripathi, this sim- 

ulation uses snapshots of the system at each control decision time (as used in Table 2.1 to 

illustrate the pessimistic scheme). The quantities of interest are the number of packets, 

from each virtual circuit, on each buffer and each link, as well as the number of packets 

dropped by each node since the most recent decision time. The buffer and link occupan- 

cies are used by the control scheme, while the dropped packets, number of arrivals (on 

links into nodes 1 and 6), and number of departures (on links out of nodes 5 and 8) are 

used to account for packets after each time step. 

To allow for different values of the one-way propagation delay, the time unit is nor- 

malized to JD; that is, instead of setting Ri,out(t) at t — 0, D, 2D,..., the control scheme 

sets Ritout(t) at t = 0,1,2,... . Furthermore, since the buffer space and buffer occupancy 

are measured in number of packets, the rates are converted from bits/second to packets 

per time unit. For example, the link capacity of 1 Gb/s translates to approximately 304 

packets per time unit, while the source means are all approximately 152 packets per time 

unit. (Note: in the simulations, a fractional number of packets is allowed.) 

For a fair comparison between the Ko, Mishra, and Tripathi schemes and the two new 

schemes, all of the control schemes are run on the same simulation setup. For example, 
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the results of the pessimistic scheme from the event-driven simulation are not compared 

against the results of the snapshot simulation for the square-root queue scheme; instead, 

the performance of the pessimistic scheme in the snapshot simulation is compared to the 

performance of the square-root scheme in the snapshot simulation. 

4.2    Simulation Results 

Tables 4.1, 4.2, 4.3, and 4.4 summarize the results of the simulations, for one virtual 

circuit with varying intensities of cross-traffic and for two virtual circuits with different 

utilizations. With the one virtual circuit, the several cases in Tables 4.1 and 4.2 include 

the performance of the new control schemes with no cross-traffic and performance of 

all of the schemes against exponential, Erlang-4, and Gaussian cross-traffic with mean 

rate equal to one-half, two-thirds, or full capacity. The type of distribution refers to the 

distribution of the number of cross-traffic packets on link (3,4) during the current decision 

interval. The mean rate of the cross-traffic is given for each case of the simulations; 

in addition, the standard deviation of the Gaussian cross-traffic is one-fifth capacity. 

Since link (3,4) is the only link with cross-traffic, the congestion level of the network is 

determined by how congested this one link is. When the cross-traffic mean rate is one-half 

capacity, the link (3,4) capacity is almost fully utilized, hence the link is congested. When 

the cross-traffic mean rate is much higher than one-half capacity, e.g., at two-thirds or 

full capacity, the link (3,4) demand is significantly greater than the link capacity; hence, 

the link is not only congested, it is overloaded. (The results for the Ko, Mishra, and 

Tripathi schemes with no cross-traffic are included for completeness.) 

Because the heuristic, square-root queue, and equal-risk schemes have adjustable pa- 

rameters that affect how well the scheme performs, only the best results for the variation 

of the given scheme are included. For the heuristic scheme, Tables 4.2 and 4.4 list the 

results for proportional heuristic scheme HpTop? In the square-root queue scheme, the 

value of a determines how much influence the bias terms have; Tables 4.2 and 4.4 present 

2See [2] for details. 
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Table 4.1   Percent packet loss for end-to-end, network, and node 3, for control schemes 
for one virtual circuit case 

Cross-traffic 
(mean & dist'n) Static 

Control Scheme 
Optimistic Pessimistic 

No cross traffic 0.61 0 0 0 0 0 0.14     0    0 

Exponential 
Erlang-4 
Gaussian 

22.71 
19.56 
15.69 

21.80 
18.68 
14.90 

21.80 
18.68 
14.90 

15.48 
12.39 
10.50 

15.48 
12.39 
10.50 

15.48 
12.39 
10.50 

16.94 0 0 
16.00 0 0 
13.87   0   0 

Exponential 
Erlang-4 
Gaussian 

30.68 
39.61 
37.31 

30.09 
38.86 
36.46 

30.09 
38.86 
36.46 

27.06 
30.91 
34.60 

27.06 
30.91 
34.60 

27.06 
30.91 
34.60 

27.49 0 0 
34.13 0 0 
35.26   0   0 

Exponential 
Erlang-4 
Gaussian 

47.05 
65.34 
84.52 

46.36 
64.54 
83.80 

46.36 
64.54 
83.80 

40.01 
61.35 
82.86 

40.01 
61.35 
82.86 

40.01 
61.35 
82.86 

40.36 0 0 
61.75 0 0 
83.44   0   0 

Table 4.2   Percent packet loss for end-to-end, network, and node 3, for control schemes 
for one virtual circuit case 

Cross-traffic Control Scheme 
(mean & dist'n) Heuristic Square-root Queue Equal risk 
No cross traffic 1.13 0 0 4.42 4.21 1.24 0 0 0 

Exponential 24.12 3.93 1.63 18.09 17.88 16.38 16.77 16.77 16.77 
Erlang-4 17.37 4.40 1.79 15.58 15.43 13.71 12.63 12.63 12.63 
Gaussian 10.93 2.94 1.10 13.60 13.47 12.00 8.92 8.92 8.92 

Exponential 33.85 4.46 1.70 28.30 28.22 25.95 25.12 25.12 25.12 
Erlang-4 35.94 3.95 1.24 35.17 35.08 33.00 28.20 28.15 28.15 
Gaussian 36.20 3.68 1.11 35.24 35.00 33.31 33.69 33.65 33.65 

Exponential 47.19 3.70 1.26 46.09 45.98 42.65 42.35 42.35 42.35 
Erlang-4 61.87 2.13 0.45 65.18 64.98 61.23 61.61 61.51 61.51 
Gaussian 80.10 0.87 0.05 85.52 85.46 83.91 84.66 84.30 84.30 
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Table 4.3   Percent packet loss for end-to-end, network, and node 3, for control schemes 
for two virtual circuits case 

VC# 
(mean) 

(A = \C) 
VCl 
VC2 

(X = C) 
VCl 
VC2 

Static 

0.68 
0.85 

0 
0 

0 
0 

Control Scheme 
Optimistic 

49.96   49.10   49.10 
49.86   49.16   49.16 

0.41 
0.42 

0.41 
0.42 

0.41 
0.42 

49.86   49.13   49.13 
49.63   49.07   49.07 

Pessimistic 

0.48 
0 

0    0 
0    0 

50.01    0   0 
49.82   0   0 

Table 4.4   Percent packet loss for end-to-end, network, and node 3, for control schemes 
for two virtual circuits case 

vc# 
(mean) Heuristic 

Control Scheme 
Square-root Queue Equal risk 

(A = \C) 
VCl 1.60    0.04 0 1.78     1.53     1.07 0.05     0.02     0.02 
VC2 1.78    0.05 0 2.34     1.96     1.04 0.24     0.01     0.01 

(A = C) 
VCl 50.38   0.01 0 49.89   48.78   48.69 49.67   49.20   49.20 
VC2 50.58   0.01 0 49.99   48.86   48.81 49.71    49.06   49.06 
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the results for a = 0.125. The value of k in the equal-risk scheme depends on what value 

of c the control designer wants; the results in Tables 4.2 and 4.4 are for the case k = 2 

(or e = 0.02274). 

One general note for the cross-traffic generation in the simulations with one virtual 

circuit concerns the cases with higher cross-traffic means. If the mean of the cross-traffic 

is near or equal to capacity, the number of cross-traffic packets is generated according 

to the given distribution,, but then the simulation truncates that number to be less than 

or equal to C. As a result, the actual mean of the cross-traffic on link (3,4) is less than 

the value given; the difference is greater for random variables with higher variance. For 

example, in Tables 4.1 and 4.2, with the cross-traffic mean equal to capacity, all schemes 

perform worst against Gaussian cross-traffic, which has the lowest variance, and best 

against exponential cross-traffic, which has the highest variance. These results imply that 

the actual Gaussian mean is close to capacity (thus link (3,4) is almost fully utilized by 

the higher-priority cross-traffic), while the actual exponential mean is significantly lower 

than capacity (thus a much higher number of VC packets can pass through link(3,4) ). 

The performance measures are three packet loss percentages: end-to-end percent loss, 

network percent loss, and node 3 percent loss. All three measures are calculated as a 

percentage of the total number of arrivals to the system. The percentages of packet loss 

in various sections of the network are used since a low percentage of packet loss in a 

given section implies that the average throughput of the virtual circuit in that section 

is high. The end-to-end loss is the percentage of arrivals dropped at any node in the 

VC; the network loss is the percentage of arrivals dropped after node 1, which serves 

as access control for the VC; and the node 3 loss is the percentage of arrivals lost at 

node 3 because of congestion on link (3,4), the only link subject to cross-traffic. For 

example, in Table 4.1, for the pessimistic scheme, with the exponential cross-traffic mean 

equal to one-half capacity, 16.94% of the arriving packets are lost from end-to-end, 0% 

are lost after node 1, and 0% are dropped at node 3 (all of which supports the claim 

that the pessimistic scheme drops packets only at the first node). Another example is 

the results for the square-root scheme, with the Gaussian cross-traffic mean equal to 
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capacity, in Table 4.2; the corresponding end-to-end loss, network loss, and node 3 loss 

are, respectively, 85.52%, 85.46%, and 83.91%. 

These numbers all include the effect of the first node's control decisions. Since this 

node is the first to regulate the arriving packets, it acts as both congestion control and 

access control, to relieve congestion in the network and to allow or deny packets admission 

into the network. The difference between the end-to-end loss and the network loss reflects 

how well the scheme performs as access control. For example, the pessimistic scheme in 

Tables 4.1 and 4.3 and the heuristic scheme in Tables 4.2 and 4.4 have large differences 

between the end-to-end loss and the network loss, reflecting that the first node exerts a 

strong admission control. On the other hand, there is the optimistic scheme in Table 4.1, 

which has no difference between the end-to-end loss and the network loss; the optimistic 

scheme applies no admission control, and the results illustrate that fact. However, there 

is more interest in these schemes as congestion control, that is, how the schemes handle 

the packets once the packets are in the network. Dividing the network loss and the 

node 3 loss by the quantity one minus the difference between the end-to-end loss and 

the network loss removes the effect of the admission control. The adjusted loss measures 

then show what fraction of packets are lost, in the network or at the congestion point, 

once they have entered the network. For example, with Gaussian cross-traffic having a 

mean of one-half capacity, the heuristic scheme's 2.94% network loss and 1.10% node 

3 loss in Table 4.2 become 3.20% and 1.20%, respectively, after dividing by 1-(0.1093 - 

0.0294). The adjusted network loss of 3.20% means that 3.20% of the packets sent on by 

the first node are dropped later along the virtual circuit; that value does not mean that 

3.20% of the arrivals are dropped after node 1 in the virtual circuit. Note that, since 

the end-to-end loss is always greater than or equal to the network loss, the adjusted loss 

rates are always greater than the original loss rates. 

For the two virtual circuits simulations, each VC has the same control scheme. The 

various cases in Tables 4.3 and 4.4 include congested levels of traffic (A = mean of the VC 

source = one-half capacity for both VC's) and severely overloaded levels (A = capacity 

for both VC's). If the total requested output rate Ri,0ut,i(t) + R%,out,2{i) is greater than 
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C, then the output rates axe scaled back by a common factor to fit into the link capacity. 

This scaling factor is C/(Ri + R2), so that [C/(Rt + R2)] * (Ri + R2) = C. (R* is 

shorthand for Ril0ut,n{i), n — 1»2.) 

Note that given the same possible link (3,4) utilization, the control schemes perform 

much better for the two virtual circuits case than for the equivalent one virtual circuit 

case. For example, compared to the entries in Tables 4.1 and 4.2, for the case fi = C/2 

for all cross-traffic distributions, the corresponding entries in Tables 4.3 and 4.4, for the 

case A = C/2, are much lower in magnitude. Even when the link (3,4) utilization is much 

higher for the two virtual circuits case, the schemes can perform much better. Given two 

virtual circuits with A = C, note that link (3,4) has p « 2, which is higher than the 

p fa 1.5 for one virtual circuit with cross-traffic p = C. The tables show that all of the 

schemes have higher losses against Gaussian and Erlang-4 cross-traffic than against the 

other controlled virtual circuit. 

The two main causes for the differences between the one virtual circuit and two virtual 

circuits case are the priority assignments and the variance of the "cross-traffic." For one 

virtual circuit, the cross-traffic has higher priority than the virtual circuit traffic, while 

for two virtual circuits, the two virtual circuits have equal priority. Hence a given cross- 

traffic rate takes a bigger chunk of bandwidth from a virtual circuit than does a competing 

controlled virtual circuit with the same rate. In addition, the controlled virtual circuits 

have less fluctuation in the level of traffic within the network than do the random cross- 

traffic distributions; hence, one virtual circuit can predict the future behavior of another 

controlled virtual circuit better than it can estimate the future behavior of random cross- 

traffic. 

For the above reasons, in the two virtual circuit simulations, the results in Tables 4.3 

and 4.4 are all nearly the same. For congested levels, all schemes lose few packets, 

usually <1% (with only the heuristic and square-root queue schemes having losses in the 

1-2% range, as shown by Table 4.4). For severely overloaded levels, the losses are all 

approximately 49-50%, except for the pessimistic and heuristic schemes. The pessimistic 

scheme has no packets lost inside the network (hence network loss and node 3 loss are 
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both 0 in Table 4.3). The heuristic scheme also has a low network loss of 0.01% and a 

low node 3 loss of 0%, as listed in Table 4.4. 
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CHAPTER 5 

CONCLUDING REMARKS 

5.1    Conclusions 

Compared to the benchmark of the static scheme performance results, all of the other 

schemes described above perform better except in some notable cases. The heuristic 

scheme has a higher end-to-end loss for one virtual circuit with no cross-traffic and for 

two virtual circuits with A equal to one-half capacity. This exception implies only that 

the heuristic scheme is much more stringent with arrivals than is the static scheme, which 

is vacuously true because the static scheme imposes no control over incoming packets. 

Also, in the cases of one virtual circuit with no cross-traffic and of two virtual circuits 

with A equal to one-half capacity, the square-root queue scheme has higher losses across 

the board. This exception is more serious, because it suggests some fundamental flaw in 

the square-root queue scheme as it is simulated. 

The best schemes, judged by performance criteria, are the pessimistic and heuristic 

schemes. If the simplicity of the scheme influences the ranking, then the pessimistic 

scheme is best, followed by the heuristic scheme, because the pessimistic scheme is less 

complex than the heuristic. Similarly, though the two new schemes perform comparably 

to the static and optimistic schemes, the utter simplicity of the static and optimistic 

schemes tilt the scale in their favor. In fact, if the high speed of the network demands 

an extremely simple control scheme, the optimistic scheme is the best scheme, since it 

performs as well as or better end-to-end than do the pessimistic and heuristic schemes. 

The main drawback is that no backpressure exists; if a link in the virtual circuit fails, 

the scheme has no way in which to compensate and still sends incoming packets to the 

failed link. 
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The two new schemes perform as well as the static scheme, except as noted above. 

However, the added complexity of these two schemes makes them less desirable than the 

other schemes developed by Ko, Mishra, and Tripathi. 

5.2    Further Areas of Research 

Three main questions remain to be answered. One which this thesis attempted and 

failed to answer is "Are there better control schemes for the Predictive Congestion Con- 

trol framework?" Perhaps the motivation behind the square-root queue and equal-risk 

schemes contains the seed for better control schemes than the four Ko, Mishra, and Tri- 

pathi schemes. For example, simply varying the parameters in the new control schemes 

may affect how they perform. In the square-root queue scheme, different weightings of 

bias,- and biasj, better averaging methods for B(t), and better estimating techniques for 

Rj,out{t) may improve the performance of the scheme. For the equal-risk scheme, the 

other distributions may serve as better first-order approximations of the cross-traffic, es- 

pecially if the network provides some information about the second and higher moments 

of the cross-traffic. 

The second question, related to the first, concerns how much better a control scheme 

can be, within the Predictive Congestion Control framework: "Given the restrictions 

of the Predictive Congestion Control framework, what is the best performance over all 

control schemes?" 

The third question addresses an issue outside the scope of this thesis. Ko, Mishra, 

and Tripathi developed the Predictive Congestion Control framework to handle the needs 

of high-speed, wide-area networks. Just how fundamentally sound is the Predictive Con- 

gestion Control approach? 

37 



REFERENCES 

[1] K.-T. Ko, P. P. Mishra, and S. K. Tripathi, "Predictive congestion control in high- 
speed wide-area networks," submitted for publication, October 1990. 

[2] K.-T. Ko, P. P. Mishra, and S. K. Tripathi, "Interaction among virtual circuits using 
predictive congestion control," presented at 2nd VHSN Workshop, Greenbelt, MD, 
March 1991. 

[3] D. Mitra and J. B. Seery, "Dynamic adaptive windows for high speed data networks: 
theory and simulations," technical report, AT&T Bell Laboratories, May 1990. 

38 


